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A study of the stability of flow between concentric cylinders, with the inner 
one rotating, distinguished three kinds of instabilities: the famililar axisymmetric 
mode, an azimuthal mode with the predicted exp i(0 - w t )  angular dependence, 
and a completely non-symmetric instability which apparently arises from the 
interaction of the other two. The effect of small axial flow upon all of these modes 
was to give an approximately parabolic dependence of the critical Taylor 
number on the axial flow rate. In  the case of the axisymmetric mode, agreement 
with the theory of Krueger & Di Prima (1964) was found to be excellent. 

1. Introduction 
This paper gives the results of an experimental investigation of the stability of 
spiral flow between rotating cylinders with respect to axisymmetric and non- 
axisymmetric disturbances. Various modes of instability were detected by 
observing visually characteristic ink patterns in the fluid. The usual para- 
meters characterizing the motion of the fluid are the Taylor number 
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T = __ (:) 
R, = V,d/v, 

and the axial Reynolds number 

where 7 is the ratio of the radii R, and R, of the inner and outer cylinders; 
d = (R2 - R J ;  L2 is the angular velocity of the inner cylinder, the outer one being 
kept stationary; v is the kinematic viscosity; and V, is the mean axial velocity. 
The critical Taylor number T, a t  which a given mode first becomes self-sustaining 
depends on R, and on the type of instability the mode represents. We have 
studied the behaviour of the types of instability found experimentally, deter- 
mining quantitatively the dependence of T, on R, over a limited range of 
R,(O G R, < 25) .  

The stability with respect to axisymmetric disturbances has been investigated 
experimentally by Donnelly & Fultz (1960a, b )  and by Snyder (1962), and theo- 
retically by Chandrasekhar (1960, 1962),  by DiPrima (1960), and by Krueger & 
DiPrima (1  964). Non-axisymmetric modes of instability have been discussed by 
DiPrima (1961) and by Donnelly & Schwarz (1964) for the case of zero axial 
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flow, but the effect of axial flow on these modes has not been calculated. In our 
experiment 7 N 0.95, so that the theories based on the narrow-gap approximation 
are applicable. 

2. Apparatus 
The apparatus, shown schematically in figure 1, is nearly identical to that 

described in detail by Donnelly & Fultz (1960b) and more recently by Snyder 
(1962). The only significant modification was the introduction of calibrated 
copper-constantan' thermocouples H and G near the top and bottom of the 
cylinders to allow accurate temperature measurements. The height of the con- 

FIGURE 1. Schematic diagram of the apparatus: A, observation region; B, bottom bearing; 
C, ink ports; D, pump; E, constant temperature bath; F, flow meter and thermometer; 
G, lower thermocouple ; H, upper thermocouple. 

centric cylinder system is about 90cm. The outer cylinder is made of Pyrex 
and has an inside radius of 6.3137 rf: 0.0004cm. This cylinder was made by pur- 
chasing a precision-bore glass cylinder from the Fischer-Porter Company, 
honing the inside with a cast-iron hone especially constructed to produce a 
straight bore, and then pitch-polishing the inner surface with a modified Sunnen 
hone. Two inner cylinders were used, one of chromium-coated aluminium with 
a radius of 5-9682+0.0006cm, and one of stainless steel with a radius of 
5.9684 0.0006 em. They yielded identical results, and hence we have not indi- 
cated on our curves which cylinder was used for a given determination. The 
values of R, and R, quoted above were obtained by making measurements at 
144 equally spaced points on the cylinders. 

To minimize systematic errors in d ,  we restricted our observations to a region 
lying 62.0 -68.5 em above the bottom of the cylinders. In  this region, labelled A 



Instability in spiral flow between rotating cylinders 283 

in figure 1, volumetric measurements were made to determine the correct 
average values of d. The values obtained were d = 0-3462 5 0.0005 em for the 
aluminium cylinder, and d = 0.3463 k 0.0005 em for the stainless-steel cylinder, 
in satisfactory agreement with the values predicted on the basis of R, and R, as 
given above. The position of our observation region had the advantages of being 
a reasonable distance from the point C where the tracer ink was injected, and of 
being far removed from the only significant heat source, the bearing B at the 
bottom of the cylinder. 

3. Experimental procedures 
3.1. Temperature determination 

Formulas (1) and (2) depend on temperature through the kinematic viscosity, 
which changes by about 2.5 yo per "C for distilled water. Hence, it is crucial that 
the temperature ta in the region of observation be accurately determined. Heat 
is produced mainly by the bearing at the bottom of the cylinders and is removed 
downstream by the constant temperature bath. The fluid can also exchange 
heat with the atmosphere via the containing walls, although this effect was 
minimized by keeping the fluid temperature near that of the surrounding air. 
An external vertical temperature gradient was avoided by using fans to supple- 
ment the air-conditioning of the laboratory. The fluid temperature was monitored 
at frequent intervals in three places: t ,  a t  the flow-meter F, tH at the top of the 
cylinders H, and t ,  a t  the bottom of the cylinders G .  

For R, > 7, we required that t ,  and tH agree to within 0.05 "C. Since the 
fluid had ample opportunity for coming to equilibrium with its surroundings by 
the time that it had reached H, and since there were no other sources or sinks of 
heat between H and the region of observation, we concluded that t, = tH to 
better than 0.05 "C. 

For R, < 7, the fluid is moving so slowly that it becomes difficult to keep 
t,. and t ,  within 0.05 "C. Instead, we circulated the fluid briskly until tA and t ,  
were very close. Reducing the flow-rate to the desired value, we monitored t ,  
continuously. If it drifted less than 0.07 "C during the entire run (typical dura- 
tion N 20min), we assumed tA = t,, since both points are subject to the same 
sort of heat exchange with the atmosphere. If the drift was greater, the results 
were discarded. In  the region R, N 7 where these two methods overlapped, they 
gave equivalent results. With these precautions, the authors estimate that the 
temperature in the region of observation was known to better than f 0.05 "C. 

3.2. Determination of Qc 

(i) Axisymmetric mode. The critical angular velocity of a given mode was 
assumed to be the value of Q at which its characteristic ink pattern was first 
observed. The procedure was to advance L2 by steps of N 4 % near the expected 
critical point, waiting a t  least 5min after each change. The critical value of 52 
was then taken to lie between the value at which the cell pattern was fist observed 
and the next lower value. Several factors complicated this procedure: (a )  the 
amplitude of the circulation in the cell approaches zero at the critical point; 
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( b )  the cell growth is very slow near critical, and during the long development 
natural diffusion of the tracer ink may obscure the pattern; (c)  the abrupt 
injection of large amounts of ink gives rise to transient patterns; ( d )  a t  very 
low flow-rates, small irregularities on the walls (e.g. the ink ports) give rise to 
local cell patterns which slowly propagate up and down the cylinders. For the 
narrow-gap case, the amplitude and growth-rate of the cells increase rapidly 
beyond the critical point (see Donnelly & Schwarz 1964), so that factors ( a )  and (b )  
introduced negligible systematic error. At high flow-rates, the problem posed by 
transient cells was minimized by slowly feeding into the fluid a thin spiral streamer 
of ink which, when cells were present, showed characteristic ‘breaks ’ a t  intervals 
equal to the cell wavelength. At low flow-rates, a broad band of ink was first 
formed with 52 set far below the critical point and after a few minutes 52 was 
raised to the desired value. Both methods were used in the region 6 < B, < 12, 
yielding the same results. Factor (d )  results in spuriously low values of 52, 
at R, N 0. To obviate this difficulty, we measured the time which it took for the 
cells to appear in our region of observation when 52 was suddenly raised to the 
desired value. This time was over 5min for a large ( N 3 yo) range of 52, but 
decreasedrapidly beyond a certain value of 52. By verifying visually the slow time 
as being due to the propagation of cells from the ink ports, we identified the 
point of sudden change as 0,. 

The weakness of the cell patterns means that the determination of 52, still 
remains somewhat dependent on the judgement of the observer. At least two 
of the authors participated in the determination of every point presented in this 
paper, thus compensating somewhat for individual eccentricities of judgement. 
Our estimated probable error in fiC is ? Q %, which agrees well with the scatter 
in our data (see figure 2). 

(ii) Non-axisymmetric modes. Non-axisymmetric disturbances of two types 
were observed to occur (see $4.2). Since these were superimposed on the axi- 
symmetric pattern, their onset was considerably more difficult to observe, 
especially when axial flow was present. Our procedure again was to establish 
a broad band of evenly distributed ink at low 52, and then to bring 52 to the 
desired value. We estimate the uncertainty in QC for these modes to be of the 
order of f 8 yo. 

4. Results and discussion 
4.1. Axisymmetric mode 

In  figure 2 we show the results obtained in the manner described above, each 
point representing an individual determination of T,. The solid curve is that 
calculated by Krueger & DiPrima (1964) in the narrow-gap limit, and it falls 
slightly below our experimental points. Donnelly & Schwarz (1964) find that the 
exact value at R, = 0 and 7 = 0.95 is T, = 1755. If we assume that the finite-gap 
effect is about the same for small finite R,, then the theoretical curve should be 
raised by about 45 Taylor numbers. The errors in 52, and temperature lead to 
an expected vertical scatter of 2 yo in our points. In  addition, the uncertainty 
of _+ 4 yo in the absolute value of the viscosity makes the vertical position of the 
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curve as a whole uncertain by k 1.0 %, or about 20 Taylor numbers. In  view of 
this, the absolute agreement with theory is excellent. 

Plotting the slope AT,IAR, of the experimental curve against Ex (figure 3), 
we find a definite discontinuity at Ex 21 16. (The slope is calculated by taking 
the difference in average T, and the difference in average 22, between neighbouring 
groups of points, and dividing the one by the other. Ez is the mean R, between 
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FIGURE 2. Dependence of the critical Taylor number T, on axial Reynolds number R,. 
Dots represent experimentally determined points and the full-line curve is that calculated 
by Krueger & DiPrima (1964). 

two groupsof points.) This discontinuity isin theneighbourhood of the point where 
Snyder found the wave-number of the cells to depart significantly from the 
theoretical values (Snyder 1962, figures 6 and 7). By means of photographs, we 
measured the angle that the cells make with the horizontal. The results (figure 4) 
show that near R, = 15 the cell pattern becomes spiral (as suggested by Snyder) 
rather than toroidal. Thus, above R, = 15, the theoretical curves are not strictly 
applicable. Itissomewhat surprising that for R, above this value the experimental 
points still fallverynear the curve calculated on the basis of a toroidal disturbance. 
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FIGURE 3. Dependence of average slope, ATJAR,, of the experimental curve on 2,. 
The break at R, 2: 16 coincides with the value of R, a t  which spiral cells are first 
observed. 

4.2. Non-axisymmetric modes 
The types of stable cell patterns observed are pictured in figure 5 ,  plate 1. These 
photographs were all taken with R, = 0,  but small flow-rates did not affect the 
qualititative behaviour of these patterns. Figure 5(a) ,  plate 1, is typical of the 
axisymmetric mode, the cell wavelength here being N 0.70cm a t  a Taylor 
number of 1780. As T is increased, the pattern changes to one of alternating 
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light and dark bands (figure 5 ( b ) )  characteristic of the weak non-axisymmetric 
modes. Each band varies as exp i (8  - wt), switching from light to dark with a well- 
defined frequency, and exactly out of phase on opposite sides of the cylinder. 
There is no doubt that this pattern corresponds to the m = 1 mode postulated 
by DiPrima (1961). To demonstrate its existence explicitly, we show a sequence 
of photographs in figure 6, plate 2, taken at about 2 see intervals. By noting the 
variation of intensity with time at a fixed height on the scale, the changes in 
phase of the pattern can easily be seen. Donnelly BE Fultz (1960~) noticed varia- 
tions of intensity with time which they ascribed to overstable oscillations. On 
page 1152 of their paper, they say ‘The overstable oscillations appear as periodic 
changes in the apparent density of ink lines between the cells’. They quote a 
period of N 12 see for the oscillations, and it is probable that they were seeing 
them = 1 mode. 

0.450 

0.2501 I 1 I I 
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FIGURE 7. Variation of the widths of the light and dark bands observed in the strong 
m = 1 mode at a fixed azimuth. Since a complete cells includes one light and one dark 
band, this shows the periodic distortion of the axial cos kz dependence of the cell shape. 
Here, dots are averages of the widths of eight neighbouring dark bands; crosses are aver- 
ages of the widths of the corresponding eight light bands. 

Theoretically, we expect w = 0.513Qc at  the onset of the m = 1 mode. By 
analysing a sequence of photographs taken at  T = 1937, we found 

w = (0.54 0.03) Qc, 

the large error being due to the difficulty of deciding when the pattern had 
shifted through a complete cycle. The agreement is good despite the fact that 
we are about 7 yo above them = 1 critical point. Contrary to the usual theoretical 
assumption that the symmetric and non-symmetric modes are independent, we 
find that the m = 1 mode is always locked in on the symmetric pattern. Thus, it  
first appears as a subtle modification of the symmetric mode rather than as a 
new cell pattern superimposed with arbitrary vertical phase. 
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No stabIe modes of the type expi(m6-wt) with m > 1 were observed with 
our narrow gap. When T is increased, the circulation in the m = 1 mode grows 
more vigorous and the axial waveform becomes distorted, perhaps because of an 
interaction with the axisymmetric pattern. The distortion at first takes the form 
of a sinusoidalvariation in thewidths of the bands, as shown in figure 7. Figure 5 ( c )  

25001 I I I I 1 
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R, 

FIGURE 8. Dependence of average experimental values of T, on R, for the axisymmetric, 
the rn = 1, and the completely non-symmetric modes. The dashed curves are fitted by 
eye to the points. , axisymmetric mode; 0, rn = 1 mode; A, completely non-symmetric 
mode. 

shows the distorted cells and also demonstrates the difference in phase on oppo- 
site sides of the cylinder. As T is increased still further, the phase change be- 
comes increasingly sudden until finally a discontinuity develops, as in figure 5 (d). 
This ‘bump’ sets in at a well-defined Taylor number and is stable. It does not 
appear to be an independent mode of instability, seeming rather to be caused by 
the interaction of the m = 1 mode with the axisymmetric mode. 

In  figure 8 we show the T, versus R, curves obtained for the axisymmetric, the 
m = 1, and the completely non-symmetric modes. They are seen to be roughly 
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(4 (4 
FIGURE 5 .  Typical appearance of the various modes of instability, with R, = 0 in each 
case. ( a )  Axisyrninetric mode (T = 1780); (6) weak wz = 1 mock (T = 1937); (c) trz = 1 
mode with some distortion (T = 2116) ; (d )  completely non-symmetric ‘bump’ (2’ = 2348). 

SCHWARZ, SPRINGETT AND DONNELLY (Facing p .  288) 
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FIGURE 6. Scqiienec of' eight photographs showing the appearance of' thc m = 1 mode 
over an interval of 13 sec. Note that in photographs separated by an interval of 7 sec, 
the positions of light and dark hands are interchanged (R ,  = 0 and T ,  = 1916). ( a )  
t = 0.00 sec, ( b )  t = 1.80 sec, (c) t = 3.72 sec, (c?) t = 5.74 see, ( e )  t = 7.50 SCC, (f) t = 9.16 
sec, (8)  t = 11.05 sec, ( h )  t = 13.29 SCC. 

RCHWARZ, SPRINGETT AND DONNELLY 
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parallel. The one available theoretical prediction concerning the azimuthal modes 
is that a t  R, = 0, T, = 1763 for the m = 1 mode (see Donnelly & Schwarz 1964; 
DiPrima 1961; Krueger, Gross & DiPrima 1964). That this is somewhat below 
the experimental value is perhaps due to the assumption in the theory that the 
m = 1 mode is completely independent of the axisymmetric mode. 

5. Conclusions 
The flow between rotating cylinders with a narrow annulus (with the outer 

cylinder stationary) was observed to have three distinct types of instability, 
each with a well-defined value of T at  which they become self-sustaining: the 
familiar axisymmetric mode, the first azimuthal mode of the form exp i (8  - w t ) ,  
and a completely unsymmetric instability apparently dependent on the inter- 
action of the m = 1 and axisymmetric modes. The qualitative behaviour of 
these patterns was not affected by small flow-rates up to R, = 20. 

The effect of R, on T, was quantitatively determined for low R,. In  the axi- 
symmetric case, the results are in excellent agreement with the theoretical 
predictions of Krueger & DiPrima. The non-symmetric modes show a similar 
dependence on R,, although they occur at higher Taylor numbers. 
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